China OEM 35L High Pressure Vessel Seamless Steel Medical Oxygen Gas Cylinder vacuum pump

Product Description

Product Description

Product name: seamless steel gas cylinder/industrial gas cylinder

Executive standard: ISO9809-1(TPED),UN ISO9809-1,GB/T5099.1

Hydraulic test pressure, Bar: 250bar/300bar

Nominal working pressure, Bar: 150bar/200bar

Material: 37Mn/34CrMo4

Filling medium: oxygen, nitrogen, carbon dioxide, etc.

Diameter (mm): 219mm~325mm

Exporting countries: China, Mexico, South America, Southeast Asia, Turkey, etc.

Nominal water volume (L): 20L~120L

Length (mm): 660mm~1850mm

Use scenario: filling industrial gas, bottle group

Weight (kg): 26.0KG~120.0KG
 

Company Profile

Welcome to ZheJiang Clean Energy Co. Ltd.

ZheJiang Clean Energy Co., Ltd. is an enterprise that produces and sells various seamless steel cylinders and composite liner gas cylinders such as compressed natural gas cylinders for vehicles, industrial gas cylinders, and fire-fighting cylinders.The company is committed to providing automotive green energy solutions and related environmental protection supporting services.

Our factory

The company was established in 2009 and entered the Xihu (West Lake) Dis. County Economic Development Zone in ZheJiang in 2014. It has built a standardized factory covering an area of 46,000 square meters.The company has focused on R&D and production for more than 10 years, and its global sales volume has reached 2 million.The company has 6 gas cylinder spinning production lines, 2 heat treatment and tempering lines, as well as machining, spraying and winding production lines. It has an annual production capacity of 360,000 gas cylinders, and can produce industrial steel seamless bottles,CNG vehicles, CNG glass fiber hoop wound gas cylinders for CNG vehicles, carbon fiber wound gas cylinders for CNG vehicles, composite material wound gas cylinders for CNG vehicles, steel seamless cylinders for CNG stations, fire-fighting steel cylinders, and LPG Cylinders, respirators and other products.

After years of business development, the “Clean” gas cylinder brand has gained a high reputation and reputation in the market. Its sales network covers Asia, Europe, and the Americas. The products are exported to more than 50 countries and regions including Italy, Brazil, Thailand, India, Uzbekistan and so on.Beginning in 2018, Green Gas Cylinders have successively become qualified suppliers for Foton, Xihu (West Lake) Dis.feng, Chery, ZheJiang Automobile and other auto plants.

Quality Control

Related certificates

QMS:ISO9001,IATF16949
PRODUCT CERTIFICATES& APPROVALS:
SEAMLESS STEEL CYLINDER:ISO9809-1(TPED),UNISO9809-1,GB/T5099.1
CNG TYPE-1:ISO11439,ECE R110;
CNG TYPE-2:GB24160,ISO11439,ECE R110;
CNG TYPE-3:Q/LD003-2019,ISO11439;
CNG TYPE-4:ISO11439,ECE R110;
LPG COMPOSITE CYLINDER:EN12245:2009,ISO11119
BREATHING AIR COMPOSITE CYLINDER:EN12245:2009
 

R&D and patents
 

ZheJiang Clean Energy had lunched research and development program of Type-4(Plastic liner with carbon fiber full-wrapped) 
ZheJiang Clean Energy has been conducting research and development plans for CNG-4 (carbon fiber fully wrapped plastic liner) gas cylinders since 2013. Through the efforts of our technicians, by the end of 2018, we have passed all the test procedures and become the first CNG-4 forensic manufacturer in China. In 2019, we established a modern standardized 6S workshop for CNG-4. At the same time, at the end of 2571, the company successfully completed the research and development of LPG composite gas cylinders and obtained relevant international certificates. It is about to complete the construction of the LPG composite gas cylinder production line in the first half of 2571 and quickly put it into production.

Exhibition

We arrange to participate in different exhibitions all around the world every year, including FIGAS&VEHIGAS(Peru), ALTFUELS MEXICO(Mexico), GAS FORUM(Russia Federation), GASSUF(Russian Federation), INSTITUCION FERIAL DE CHINAMFG MADRID(Spain), International NGVS Exhibition& Forum(China)

Package&Logistics

We can provide a series of package and logistics solutions according to the customer’s requirements, to ensure our goods reach our customers on time and safely

FAQ

* Q1: Are you manufacturer or trade company?
 * A1: We are a Chinese manufacturer, and have been specializing in manufacturing gas cylinders for more than 10 years. Our company brand is “LD”.
 * Q2: What is your daily production capacity?
 * A2: Our production capacity everyday is 800~1000 units.
 * Q3: What is your delivery time?
 * A3: Usually our delivery time is 25-45 days against the advance payment. Mainly it depends on when we get the production materials.
 * Q4: What certificates do you have?
 * A4: We have ISO9001 and IATF16949 for management system, and ISO9809, ISO11439 and ECE R110 for production approval.
 * Q5: Do you accept OEM production?
 * A5: Of course, we have served several famous motor OEMs, such as TOYOTA(Thailand)-Thailand, IKCO-Iran, GAZ-Russia, DF-China, and FOTON-China, etc. We would like to serve more customers with our superior quality.
 * Q6: Can you provide samples to us? 
 * A6: Yes, we can provide 1-2 samples for your testing freely, but you need to undertake the logistic cost firstly.
 * Q7: Can you customize the products?
 * A7: Yes, we can provide you with various customized products. For example, your company brand/logo, different accessories and your favorite colors.

Material: 37mn
Usage: Gas
Structure: General Cylinder
Power: Hydraulic
Standard: Standard
Pressure Direction: Single-acting Cylinder
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

What advancements in hydraulic cylinder technology have improved energy efficiency?

Advancements in hydraulic cylinder technology have led to significant improvements in energy efficiency, allowing hydraulic systems to operate more efficiently and reduce energy consumption. These advancements aim to minimize energy losses, optimize system performance, and enhance overall efficiency. Here’s a detailed explanation of some key advancements in hydraulic cylinder technology that have improved energy efficiency:

1. Efficient Hydraulic Circuit Design:

– The design of hydraulic circuits has evolved to improve energy efficiency. Advancements in circuit design techniques, such as load-sensing, pressure-compensated systems, or variable displacement pumps, help match the hydraulic power output to the actual load requirements. These designs reduce unnecessary energy consumption by adjusting the flow and pressure levels according to the system demands, rather than operating at a fixed high pressure.

2. High-Efficiency Hydraulic Fluids:

– The development of high-efficiency hydraulic fluids, such as low-viscosity or synthetic fluids, has contributed to improved energy efficiency. These fluids offer lower internal friction and reduced resistance to flow, resulting in decreased energy losses within the system. Additionally, advanced fluid additives and formulations enhance lubrication properties, reducing friction and optimizing the overall efficiency of hydraulic cylinders.

3. Advanced Sealing Technologies:

– Seal technology has advanced significantly, leading to improved energy efficiency in hydraulic cylinders. High-performance seals, such as low-friction or low-leakage seals, minimize internal leakage and friction losses. Reduced internal leakage helps maintain system pressure more effectively, resulting in less energy waste. Additionally, innovative sealing materials and designs enhance durability and extend seal life, reducing the need for frequent maintenance and replacement.

4. Electro-Hydraulic Control Systems:

– The integration of advanced electro-hydraulic control systems has greatly contributed to energy efficiency improvements. By combining electronic control with hydraulic power, these systems enable precise control over cylinder operation, optimizing energy usage. Proportional or servo valves, along with position or force feedback sensors, allow for accurate and responsive control, ensuring that hydraulic cylinders operate at the required level of performance while minimizing energy waste.

5. Energy Recovery Systems:

– Energy recovery systems, such as hydraulic accumulators, have been increasingly utilized to improve energy efficiency in hydraulic cylinder applications. Accumulators store excess energy during low-demand periods and release it when there is a peak demand, reducing the need for the hydraulic pump to provide the full power continuously. By utilizing stored energy, these systems can significantly reduce energy consumption and improve overall system efficiency.

6. Smart Monitoring and Control:

– Advancements in smart monitoring and control technologies have enabled real-time monitoring of hydraulic systems, allowing for optimized energy usage. Integrated sensors, data analytics, and control algorithms provide insights into system performance and energy consumption, enabling operators to make informed decisions and adjustments. By identifying inefficiencies or suboptimal operating conditions, energy consumption can be minimized, leading to improved energy efficiency.

7. System Integration and Optimization:

– The integration and optimization of hydraulic systems as a whole have played a significant role in improving energy efficiency. By considering the entire system layout, component sizing, and interaction between different elements, engineers can design hydraulic systems that operate in the most energy-efficient manner. Proper sizing of components, minimizing pressure drops, and reducing unnecessary piping or valve restrictions all contribute to improved energy efficiency of hydraulic cylinders.

8. Research and Development:

– Ongoing research and development efforts in the field of hydraulic cylinder technology continue to drive energy efficiency advancements. Innovations in materials, component design, system modeling, and simulation techniques help identify areas for improvement and optimize energy usage. Additionally, collaboration between industry stakeholders, research institutions, and regulatory bodies fosters the development of energy-efficient hydraulic cylinder technologies.

In summary, advancements in hydraulic cylinder technology have resulted in notable improvements in energy efficiency. Efficient hydraulic circuit designs, high-efficiency hydraulic fluids, advanced sealing technologies, electro-hydraulic control systems, energy recovery systems, smart monitoring and control, system integration and optimization, as well as ongoing research and development efforts, all contribute to reducing energy consumption and enhancing the overall energy efficiency of hydraulic cylinders. These advancements not only benefit the environment but also offer cost savings and improved performance in various hydraulic applications.

hydraulic cylinder

Ensuring Stable Performance of Hydraulic Cylinders Under Fluctuating Loads

Hydraulic cylinders are designed to provide stable performance even under fluctuating loads. They achieve this through various mechanisms and features that allow for efficient load control and compensation. Let’s explore how hydraulic cylinders ensure stable performance under fluctuating loads:

  1. Piston Design: The piston inside the hydraulic cylinder plays a crucial role in load control. It is typically equipped with seals and rings that prevent leakage of hydraulic fluid and ensure effective transfer of force. The piston design may incorporate features such as stepped or tandem pistons, which provide enhanced load-bearing capabilities and improved stability by distributing the load across multiple surfaces.
  2. Cylinder Cushioning: Hydraulic cylinders often incorporate cushioning mechanisms to minimize the impact and shock caused by fluctuating loads. Cushioning can be achieved through various methods, such as adjustable cushion screws, hydraulic cushioning valves, or elastomeric cushioning rings. These mechanisms slow down the piston’s movement near the end of the stroke, reducing the impact and preventing sudden stops that could lead to instability.
  3. Pressure Compensation: Fluctuating loads can result in pressure variations within the hydraulic system. To ensure stable performance, hydraulic cylinders are equipped with pressure compensation mechanisms. These mechanisms maintain a consistent pressure level in the system, regardless of load changes. Pressure compensation can be achieved through the use of pressure relief valves, compensating pistons, or pressure-compensated flow control valves.
  4. Flow Control: Hydraulic cylinders often incorporate flow control valves to regulate the speed of the cylinder’s movement. By controlling the flow rate of hydraulic fluid, the cylinder’s motion can be adjusted to match the changing load conditions. Flow control valves allow for smooth and controlled movement, preventing abrupt changes that could lead to instability.
  5. Feedback Systems: To ensure stable performance under fluctuating loads, hydraulic cylinders can be integrated with feedback systems. These systems provide real-time information on the cylinder’s position, velocity, and force. By continuously monitoring these parameters, the hydraulic system can make immediate adjustments to maintain stability and compensate for load fluctuations. Feedback systems can include position sensors, pressure sensors, or load sensors, depending on the specific application.
  6. Proper Sizing and Selection: Ensuring stable performance under fluctuating loads starts with proper sizing and selection of hydraulic cylinders. It is crucial to choose cylinders with appropriate bore size, rod diameter, and stroke length to match the anticipated load conditions. Oversized or undersized cylinders can lead to instability and reduced performance. Proper sizing also involves considering factors such as the required force, speed, and duty cycle of the application.

In summary, hydraulic cylinders ensure stable performance under fluctuating loads through features such as piston design, cushioning mechanisms, pressure compensation, flow control, feedback systems, and proper sizing and selection. These mechanisms and considerations allow hydraulic cylinders to provide consistent and controlled movement, even in dynamic load conditions, resulting in reliable and stable performance.

hydraulic cylinder

What is a hydraulic cylinder and how does it function in various applications?

A hydraulic cylinder is a mechanical actuator that converts hydraulic energy into linear force and motion. It plays a critical role in various applications where controlled and powerful linear motion is required. Hydraulic cylinders are commonly used in industries such as construction, manufacturing, agriculture, and transportation. Here’s a detailed explanation of what a hydraulic cylinder is and how it functions:

Definition and Components:

– A hydraulic cylinder consists of a cylindrical barrel, a piston, a piston rod, and various seals. The barrel is a hollow tube that houses the piston and allows for fluid flow. The piston divides the cylinder into two chambers: the rod side and the cap side. The piston rod extends from the piston and provides a connection point for external loads. Seals are used to prevent fluid leakage and maintain hydraulic pressure within the cylinder.

Function:

– The function of a hydraulic cylinder is to convert the pressure and flow of hydraulic fluid into linear force and motion. The hydraulic fluid, typically oil, is pressurized and directed into one of the chambers of the cylinder. As the fluid enters the chamber, it applies pressure on the piston, causing it to move in a linear direction. This linear motion of the piston is transferred to the piston rod, creating a pushing or pulling force.

Working Principle:

– The working principle of a hydraulic cylinder is based on Pascal’s law, which states that pressure exerted on a fluid in a confined space is transmitted equally in all directions. In a hydraulic cylinder, when hydraulic fluid is pumped into one side of the cylinder, it creates pressure on the piston. The pressure is transmitted through the fluid to the other side of the piston, resulting in a balanced force across the piston and piston rod. This force generates linear motion in the direction determined by the fluid input.

Applications:

– Hydraulic cylinders find extensive use in a wide range of applications due to their ability to generate high forces and precise control of linear motion. Some common applications include:

1. Construction Equipment: Hydraulic cylinders are used in excavators, loaders, bulldozers, and cranes for lifting, pushing, and digging tasks.

2. Manufacturing Machinery: Hydraulic cylinders are employed in presses, machine tools, and material handling equipment for pressing, clamping, and lifting operations.

3. Agricultural Machinery: Hydraulic cylinders are used in tractors, harvesters, and irrigation systems for tasks like steering, lifting, and controlling attachments.

4. Transportation: Hydraulic cylinders are utilized in vehicles such as dump trucks, garbage trucks, and forklifts for tilting, lifting, and tipping operations.

5. Aerospace and Defense: Hydraulic cylinders are employed in aircraft landing gear, missile systems, and hydraulic actuators for control surfaces.

6. Marine and Offshore: Hydraulic cylinders are used in ship steering systems, cranes, and offshore drilling equipment for various lifting and positioning tasks.

In these applications, hydraulic cylinders offer advantages such as high force capability, precise control, compact size, and durability. They provide efficient and reliable linear motion, contributing to enhanced productivity and functionality in a wide range of industries.

Overall, hydraulic cylinders are integral components in various applications where controlled and powerful linear motion is required. Their ability to convert hydraulic energy into mechanical force makes them invaluable in numerous industries, enabling the operation of heavy machinery, precise positioning, and efficient load handling.

China OEM 35L High Pressure Vessel Seamless Steel Medical Oxygen Gas Cylinder   vacuum pump	China OEM 35L High Pressure Vessel Seamless Steel Medical Oxygen Gas Cylinder   vacuum pump
editor by CX 2023-12-11